The nonabelian Liouville-Arnold integrability

نویسنده

  • Anatoliy K. Prykarpatsky
چکیده

There is proposed a symplectic theory approach to studying integrable via the nonabelian Liouville-Arnold theorem Hamiltonian systems on canonically symplectic phase spaces. A method of algebraic-analytical constructing the corresponding integral submanifold imbedding mappings is devised.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Nonabelian Liouville-Arnold Integrability by Quadratures Problem: a Symplectic Approach

A symplectic theory approach is devised for solving the problem of algebraic-analytical construction of integral submanifold imbeddings for integrable (via the nonabelian Liouville-Arnold theorem) Hamiltonian systems on canonically symplectic phase spaces.

متن کامل

On the Hamiltonian Structure of Hirota-kimura Discretization of the Euler Top

This paper deals with a remarkable integrable discretization of the so(3) Euler top introduced by Hirota and Kimura. Such a discretization leads to an explicit map, whose integrability has been understood by finding two independent integrals of motion and a solution in terms of elliptic functions. Our goal is the construction of its Hamiltonian formulation. After giving a simplified and streaml...

متن کامل

Near Integrability in Low Dimensional Gross--Neveu Models

The low-dimensional Gross–Neveu models are studied. For the systems, related to the Lie algebras so(4), so(5), sp(4), sl(3), we prove that they have Birkhoff-Gustavson normal forms which are integrable and non-degenerate in Kolmogorov–Arnold–Moser (KAM) theory sense. Unfortunately, this is not the case for systems with three degrees of freedom, related to the Lie algebras so(6) ∼ sl(4), so(7), ...

متن کامل

On the Hamiltonian structure of Hirota’s discretization of the Euler top

This talk deals with a remarkable integrable discretization of the SO(3) Euler top introduced in [1] by R. Hirota and K. Kimura. A class of implicit discretizations of the Euler top sharing the integrals of motion with the continuous system has been presented and studied in [2]. The Hirota-Kimura discretization of the Euler top leads to an explicit map. Its integrability is proven by finding tw...

متن کامل

Liouville-Arnold integrability of the pentagram map on closed polygons

The pentagram map is a discrete dynamical system defined on the moduli space of polygons in the projective plane. This map has recently attracted a considerable interest, mostly because its connection to a number of different domains, such as: classical projective geometry, algebraic combinatorics, moduli spaces, cluster algebras and integrable systems. Integrability of the pentagram map was co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999